A Multi-Resolution Pyramid for Outdoor Robot Terrain Perception
نویسندگان
چکیده
This paper addresses the problem of outdoor terrain modeling for the purposes of mobile robot navigation. We propose an approach in which a robot acquires a set of terrain models at differing resolutions. Our approach addresses one of the major shortcomings of Bayesian reasoning when applied to terrain modeling, namely artifacts that arise from the limited spatial resolution of robot perception. Limited spatial resolution causes small obstacles to be detectable only at close range. Hence, a Bayes filter estimating the state of terrain segments must consider the ranges at which that terrain is observed. We develop a multi-resolution approach that maintains multiple navigation maps, and derive rational arguments for the number of layers and their resolutions. We show that our approach yields significantly better results in a practical robot system, capable of acquiring detailed 3-D maps in large-scale outdoor environments.
منابع مشابه
Enhancing Fuzzy Robot Navigation Systems by Mimicking Human Visual Perception of Natural Terrain Traversability
This paper presents a technique for learning to assess terrain traversability for outdoor mobile robot navigation using human-embedded logic and real-time perception of terrain features extracted from image data. The methodology utilizes a fuzzy logic framework and vision algorithms for analysis of the terrain. The terrain assessment and learning methodology is tested and validated with a set o...
متن کاملDomain Adaptation For Mobile Robot Navigation
An important challenge in outdoor mobile robotic perception is maintaining terrain classification performance throughout the extremely variable conditions that we may wish a robot to operate under. Outdoor robots operate in a series of “environments” that consist of diverse terrain, vegetation, weather, and lighting conditions. A physical robot does not randomly jump between environments; typic...
متن کاملHigh Performance Outdoor Navigation from Overhead Data using Imitation Learning
High performance, long-distance autonomous navigation is a central problem for field robotics. Efficient navigation relies not only upon intelligent onboard systems for perception and planning, but also the effective use of prior maps and knowledge. While the availability and quality of low cost, high resolution satellite and aerial terrain data continues to rapidly improve, automated interpret...
متن کاملTerrain Mapping and Classification in Outdoor Environments Using Neural Networks
This paper describes a three-dimensional terrain mapping and classification technique to allow the operation of mobile robots in outdoor environments using laser range finders. We propose the use of a multi-layer perceptron neural network to classify the terrain into navigable, partially navigable, and non-navigable. The maps generated by our approach can be used for path planning, navigation, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004